56 research outputs found

    Capillary Condensation in Confined Media

    Full text link
    We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion crack propagation.Comment: 28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Pres

    Multiscale Stick-Slip Dynamics of Adhesive Tape Peeling

    Get PDF
    Using a high-speed camera, we follow the propagation of the detachment front during the peeling of an adhesive tape from a flat surface. In a given range of peeling velocity, this front displays a multiscale unstable dynamics, entangling two well-separated spatiotemporal scales, which correspond to microscopic and macroscopic dynamical stick-slip instabilities. While the periodic release of the stretch energy of the whole peeled ribbon drives the classical macro-stick-slip, we show that the micro-stick-slip, due to the regular propagation of transverse dynamic fractures discovered by Thoroddsen et al. [Phys. Rev. E 82, 046107 (2010)], is related to a high-frequency periodic release of the elastic bending energy of the adhesive ribbon concentrated in the vicinity of the peeling front.Comment: to appear in Physical Review Letters (2015

    Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller

    Full text link
    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick-slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasi-static oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.Comment: Forthcoming in Physical Review

    Imaging the stick-slip peeling of an adhesive tape under a constant load

    Get PDF
    Using a high speed camera, we study the peeling dynamics of an adhesive tape under a constant load with a special focus on the so-called stick-slip regime of the peeling. It is the first time that the very fast motion of the peeling point is imaged. The speed of the camera, up to 16000 fps, allows us to observe and quantify the details of the peeling point motion during the stick and slip phases: stick and slip velocities, durations and amplitudes. First, in contrast with previous observations, the stick-slip regime appears to be only transient in the force controlled peeling. Additionally, we discover that the stick and slip phases have similar durations and that at high mean peeling velocity, the slip phase actually lasts longer than the stick phase. Depending on the mean peeling velocity, we also observe that the velocity change between stick and slip phase ranges from a rather sudden to a smooth transition. These new observations can help to discriminate between the various assumptions used in theoretical models for describing the complex peeling of an adhesive tape. The present imaging technique opens the door for an extensive study of the velocity controlled stick-slip peeling of an adhesive tape that will allow to understand the statistical complexity of the stick-slip in a stationary case

    Fish Response to Multiple Anthropogenic Stressors in Mediterranean Coastal Lagoons: A Comparative Study of the Role of Different Management Strategies

    Get PDF
    Transitional waters are among the most productive ecosystems of the world and their biotic communities show high diversity and complex mechanisms of self-regulation that provide valuable ecosystem services and societal goods and benefits. In this work a comparison of the fish assemblages of three non-tidal Mediterranean coastal lagoons is carried out in order to evaluate the impacts of alternative management strategies. The anthropogenic pressures acting on the lagoons were quantified by means of categorical indicators, while the characteristics of the fish assemblages were summarized in multi-metric indices (MMIs). Two MMIs were developed using data collected with a beach seine net and with fyke nets, following an empirical approach that selects, from a pool of 73 metrics, the combination that maximizes the MMI/pressure relationship. The two MMIs include four metrics each, most of which are based on feeding mode functional guilds and habitat use functional guilds, and they are sensitive to anthropogenic pressures. The human activities directly or indirectly affecting water quality are the ones that most influence the fish assemblage, while the presence of artisanal fisheries, a typical and relevant resource use in these lagoons, seems to play a beneficial role. Lagoon fisheries management relies on the maintenance of infrastructures that guarantee the hydraulic functioning of the lagoon, thus ensuring exchanges with the adjacent coastal sea, and therefore indirectly contributing to the habitat quality

    Mechanics of an adhesive tape in a zero degree peel test: effect of large deformation and material nonlinearity

    Get PDF
    International audienceThe common pressure sensitive adhesive (PSA) tape is a composite consisting of a stiff backing layer and a soft adhesive layer. A simple and common way to test how adhesive tapes respond to large shear deformations is the zero degree peel test. Because the backing is very stiff compared to the adhesive layer, the region where the adhesive layer is subjected to large shear can be hundreds of times its thickness. We use a large deformation hyperelastic model to study the stress and deformation fields in the adhesive layer in this test. We present a closed-form solution for the stress field in the adhesive layer and use this solution to determine how load is transferred from the backing layer to the adhesive. Our analytical model is then compared with finite element results, and except for a small region near the peel front, the predicted stress and deformation agree well with the finite element model. Interestingly, we find very different results from the classical linear theory established by Kaelble. In particular for large deformations, our analysis shows that the lateral stresses (parallel to the rigid substrate) are much larger than the shear stress in the adhesive layer. The discrepancy in the stress state and the deformation state with the linear theory is particularly large near the peel front, which we study with a finite element model. These new results will be very useful to interpret experiments and in particular to identify the high stress regions where failure is likely to initiate in zero-degree peel tests also called shear resistance tests in the PSA industry

    Ultra-long range correlations of the dynamics of jammed soft matter

    Get PDF
    We use Photon Correlation Imaging, a recently introduced space-resolved dynamic light scattering method, to investigate the spatial correlation of the dynamics of a variety of jammed and glassy soft materials. Strikingly, we find that in deeply jammed soft materials spatial correlations of the dynamics are quite generally ultra-long ranged, extending up to the system size, orders of magnitude larger than any relevant structural length scale, such as the particle size, or the mesh size for colloidal gel systems. This has to be contrasted with the case of molecular, colloidal and granular ``supercooled'' fluids, where spatial correlations of the dynamics extend over a few particles at most. Our findings suggest that ultra long range spatial correlations in the dynamics of a system are directly related to the origin of elasticity. While solid-like systems with entropic elasticity exhibit very moderate correlations, systems with enthalpic elasticity exhibit ultra-long range correlations due to the effective transmission of strains throughout the contact network.Comment: To appear in Soft Matte

    Micromechanisms of fracture propagation in glassy polymers

    Get PDF
    While most glassy polymers are nominally brittle at macroscopic scales, they are known to exhibit plastic deformation in indentation, scratching, and microcutting when the loaded region is sufficiently small. The same applies to the micrometer size process zone at the tip of a propagating crack. While the presence and approximate size of this microscale plastic zone is well described by the Dugdale model, the prediction of the toughness of these materials is not possible without accounting for the details of the local large strain field and the work hardening behaviour of these polymers, which can be inferred from their response to compressive tests. Strain localization mechanisms such as crazing or shear banding should also be taken into account to properly model toughness. Finally, viscoplastic creep plays a major role in determining the dependence of the toughness on crack propagation velocity, as well as the important difference between the initiation and propagation toughness, which is responsible for the occurrence of a characteristic stick-slip propagation under some loading conditions. Please click Additional Files below to see the full abstract

    Anisotropic super-attenuation of capillary waves on driven glass interfaces

    Full text link
    Metrological AFM measurements are performed on the silica glass interfaces of photonic band-gap fibres and hollow capillaries. The freezing of attenuated out-of-equilibrium capillary waves during the drawing process is shown to result in a reduced surface roughness. The roughness attenuation with respect to the expected thermodynamical limit is determined to vary with the drawing stress following a power law. A striking anisotropic character of the height correlation is observed: glass surfaces thus retain a structural record of the direction of the flow to which the liquid was submitted
    corecore